Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 14 de 14
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
preprints.org; 2023.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202307.0876.v1

Résumé

Since the first description of SARS-CoV-2 in China in 2019, thousands of variants have emerged worldwide. For some of them, the constellation of mutations caused changes in virus biology, pathogenicity, infectivityity and transmissibility resulting in dissemination throughout the world. Gamma variant (P.1) differs from SARS-CoV-2 Wuhan strain (B.1) by 12 amino acids in the Spike (S) protein, and presented mutations related to greater affinity for the receptor angioten-sin-converting enzyme 2 (ACE-2) and/or immune escape. The Gamma variant and subvariants were responsible for the second wave of COVID-19 in the Brazilian city of Manaus, characterized by high mortality and rapid transmission. The ability of variants to induce cytokine production may be closely related to their pathogenicity. Herein we observed that there was no significant difference in the quantity of cytokines among macrophages or neutrophils infected with P.1 and B.1 strains. Also, no significant difference was observed in the absolute number of macrophages and neutrophils infected with these variants. Furthermore, no evidence of SARS-CoV-2 replication was observed in macrophages when infected by the two analyzed variants. Our findings suggest that the difference in the epidemiological outcome observed during the P.1 variant spread when compared to B.1, it is not explained by differences in the quantity of cytokines and absolute number of macrophages or neutrophils. Through bioinformatics analysis of the S protein, we observed that the physicochemical differences between the variants and subvariants of P.1, probably refer to the degree of infectivity, due to the impact caused in the recognition of antibodies and receptor af-finity


Sujets)
COVID-19
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.01.25.23284831

Résumé

In recent years, the SARS-CoV-2 viruses emerged and spread around the world, leaving a large death toll and long-lasting impact on survivors. As of January 2023, Brazil is still among the countries with the highest number of registered deaths. This continental-size and pluralistic country experienced a heterogenous implementation of non-pharmacological and pharmacological interventions which, associated with large socioeconomic differences between the country regions, has led to distinct virus spread dynamics across the country. Here we investigate the spatiotemporal dispersion of emerging SARS-CoV-2 lineages and its dynamics in distinct epidemiological scenarios in the first two years of the pandemics in the Pernambuco state (Northeast Brazil). We generated a total of 1389 new SARS-CoV-2 genomes from June 2020 to August 2021 covering all major regions of the state. This sampling captured the arrival, communitary transmission and the circulation of the B1.1, B.1.1.28 and B.1.1.33 lineages in the first eight months of the pandemics, the emergence of the former variant of interest P.2 and the emergence and fast replacement of all previous variants by the more transmissible variant of concern P.1 (Gamma) lineage. Based on the incidence and lineage spread pattern we observed that there was an East-to-West to inner state pattern of transmission which is in agreement with the transmission of more populous metropolitan areas to medium and small size country-side cities in the state. Such transmission patterns may be partially explained by the main routes of traffic across municipalities in the state. Nevertheless, inter-state traffic was also another important source of lineage introduction and spread into the state. Our results highlight that the fine grained intrastate analysis of lineages and incidence spread can provide actionable insights for planning future non-pharmacological intervention for air-borne transmissible human pathogens.

3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.09.21.22280193

Résumé

ABSTRACT The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively, with variable impact according to the immune population landscape. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazil’s most heavily affected regions. We sequenced the virus genome from 4,128 patients collected in Amazonas between July 1st, 2021 and January 31st, 2022 and investigated the lineage replacement dynamics using a phylodynamic approach. The VOCs Delta and Omicron displayed similar patterns of phylogeographic spread but significantly different epidemic dynamics. The Delta and Omicron epidemics were fueled by multiple introduction events, followed by the successful establishment of a few local transmission lineages of considerable size that mainly arose in the Capital, Manaus. The VOC Omicron spread and became dominant much faster than the VOC Delta. We estimate that under the same epidemiological conditions, the average Re of Omicron was ∼3.3 times higher than that of Delta and the average Re of the Delta was ∼1.3 times higher than that of Gamma. Furthermore, the gradual replacement of Gamma by Delta occurred without an upsurge of COVID-19 cases, while the rise of Omicron fueled a sharp increase in SARS-CoV-2 infection. The Omicron wave displayed a shorter duration and a clear decoupling between the number of SARS-CoV-2 cases and deaths compared with previous (B.1.* and Gamma) waves in the Amazonas state. These findings suggest that the high level of hybrid immunity (infection plus vaccination) acquired by the Amazonian population by mid-2021 was able to limit the spread of the VOC Delta and was also probably crucial to curb the number of severe cases, although not the number of VOC Omicron new infections.


Sujets)
COVID-19
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.24.22269379

Résumé

In the present study, serum samples of 20 hospitalized COVID-19 patients from Brazil who were infected by the earlier SARS-CoV-2 lineages B.1.1.28 and B.1.1.33, and by the variant of concern (VOC) Gamma (P.1) were tested by plaque reduction neutralization test (PRNT90) with wild isolates of a panel of SARS-CoV-2 lineages, including B.1, Zeta, N.10, and the VOCs Gamma, Alpha, and Delta that emerged in different timeframes of the pandemic. The main objectives of the present study were to evaluate if serum of COVID-19 patients infected by earlier lineages of SARS-CoV-2 were capable to neutralize recently emerged VOCs, and if PRNT90 is a reliable serologic method to distinguish infections caused by different SARS-CoV-2 lineages. Overall, sera collected from the day of admittance to the hospital to 21 days after diagnostic of patients infected by the two earlier lineages B.1.1.28 and B.1.1.33 presented neutralizing capacity for all challenged VOCs, including Gamma and Delta, that were the most prevalent VOCs in Brazil. Among all variants tested, Delta and N.10 presented the lowest mean of neutralizing antibody titers, and B.1.1.7, presented the highest titers. Four patients infected with Gamma, that emerged in December 2020, presented neutralizing antibodies for B.1, B.1.1.33 and B.1.1.28, its ancestor lineage. All of them had neutralizing antibodies under the level of detection for the VOC Delta. Interestingly, patients infected by B.1.1.28 presented very similar mean of neutralizing antibody titers for both B.1.1.33 and B.1.1.28. Findings presented here indicate that most patients infected in early stages of COVID-19 pandemic presented neutralizing antibodies up to 21 days after diagnostic capable to neutralize wild types of all recently emerged VOCs in Brazil, and that the PRNT90 it is not a reliable serologic method to distinguish natural infections caused by different SARS-CoV-2 lineages.


Sujets)
COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.29.21266109

Résumé

The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma during late 2020 and early 2021 in Brazilian settings with high seroprevalence raised some concern about the potential role of reinfections in driving the epidemic. Very few cases of reinfection associated with the VOC Gamma, however, have been reported. Here we describe 25 cases of SARS-CoV-2 reinfection confirmed by real-time RT-PCR twice within months apart in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected between March and December 2020 with distinct viral lineages, including B.1.1, B.1.1.28, B.1.1.33, B.1.195 and P.2, and then reinfected with the VOC Gamma between 3 to 12 months after primo-infection. The overall mean cycle threshold (Ct) value of the first (25.7) and second (24.5) episodes were roughly similar for the whole group and 14 individuals displayed mean Ct values < 25.0 at reinfection. Sera of 14 patients tested by plaque reduction neutralization test after reinfection displayed detectable neutralizing antibodies against Gamma and other SARS-CoV-2 variants (B.1.33, B.1.1.28 and Delta). All individuals have milder or no symptoms after reinfection and none required hospitalization. The present study demonstrates that the VOC Gamma was associated with reinfections during the second Brazilian epidemic wave in 2021 and raised concern about the potential infectiousness of reinfected subjects. Although individuals here analyzed failed to mount a long-term sterilizing immunity, they developed a high anti-Gamma neutralizing antibody response after reinfection that may provide some protection against severe disease.

6.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1050492.v1

Résumé

Background: COVID-19 has a broad spectrum of clinical manifestations, from asymptomatic to mild or moderate symptoms, reaching the most severe forms and death. The mechanisms underlying the SARS-CoV-2 infection and its clinical evolution are still unclear. Once SARS-CoV-2 infects individuals, host factors are activated by the presence of the virus inside the cells, such as the inflammasome system. The search of risk factors for COVID-19 is of relevance for clinical management. In this study, we investigated the impact of 11 single-base polymorphisms (SNPs) in the NLRP3, CARD8, AIM2, CASP-1, IFI16, and IL-1β inflammasome genes in SARS-CoV-2 infected individuals with distinct disease outcomes. Methods Patients were divided into two groups: (1) inpatients, with severe/critical disease (Hospitalized group, n=451), and (2) convalescent volunteers with prior SARS-CoV-2 infection and a history of asymptomatic to mild symptoms (Mild group, n=43). Patients hospitalized were followed up at a Hospital Center for COVID-19 Pandemic – National Institute of Infectology (INI)/FIOCRUZ, Rio de Janeiro, Brazil, from June 2020 to March 2021. The Mild group was recruited at Oswaldo Cruz Institute (IOC)/FIOCRUZ, Rio de Janeiro, Brazil, in 2020. Genotyping of the SNPs was determined by Real-Time PCR. Protection and risk estimations were performed by unconditional logistic regression models. Results Among the genotyped SNPs, significant differences in the NLRP3 rs1539019 and rs10754558 frequencies were observed between the groups. The C/C genotype (OR adj =6.31; P adj =0.026) or allele C (OR adj =1.05; P adj =0.002) in rs1539019 polymorphism were associated with the risk for hospitalization, while the C/G genotype (OR adj =0.16; P adj =0.016) or carrier-G (OR adj =0.2; P adj =0.028) in rs10754558 polymorphism were associated with protection for hospitalization. Regarding the NLRP3 genetic variants, the A-C-G-C-G haplotype (OR adj =0.14; P adj = 0.030) was associated with protection for hospitalization. No significant association was observed for the other polymorphisms. Conclusions As of our knowledge, this is the first study demonstrating the association of inflammasome NLRP3 variants with risk and/or protection for hospitalization in COVID-19. Studies linking the NLRP3 inflammasome and SARS-CoV-2 infection are still scarce due to the recent emergence of this pathogen. Our results contribute to the discussion of the impact of inflammasomes in the clinical evolution of COVID-19.


Sujets)
COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.10.24.21265116

Résumé

The COVID-19 epidemic in Brazil experienced two major country-wide lineage replacements, the first driven by the lineage P.2, formerly classified as variant of interest (VOI) Zeta in late 2020 and the second by the variant of concern (VOC) Gamma in early 2021. To better understand how these SARS-CoV-2 lineage turnovers occurred in Brazil, we analyzed 11,724 high-quality SARS-CoV-2 whole genomes of samples collected in different country regions between September 2020 and April 2021. Our findings indicate that the spatial dispersion of both variants in Brazil was driven by short and long-distance viral transmission. The lineage P.2 harboring Spike mutation E484K probably emerged around late July 2020 in the Rio de Janeiro (RJ) state, which contributed with most (~50%) inter-state viral disseminations, and only became locally established in most Brazilian states by October 2020. The VOC Gamma probably arose in November 2020 in the Amazonas (AM) state, which was responsible for 60-70% of the inter-state viral dissemination, and the earliest timing of community transmission of this VOC in many Brazilian states was already traced to December 2020. We estimate that variant Gamma was 1.56-3.06 more transmissible than variant P.2 co-circulating in RJ and that the median effective reproductive number (Re) of Gamma in RJ and SP states (Re = 1.59-1.91) was lower than in AM (Re = 3.55). In summary, although the epicenter of the lineage P.2 dissemination in Brazil was the heavily interconnected Southeastern region, it displayed a slower rate of spatial spread than the VOC Gamma originated in the more isolated Northern Brazilian region. Our findings also support that the VOC Gamma was more transmissible than lineage P.2, although the viral Re of the VOC varied according to the geographic context.


Sujets)
COVID-19
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.18.21263755

Résumé

The SARS-CoV-2 has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well characterized but two main factors have precluded major coinfection/codetection analysis thus far: i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic which limited the identification of lineage defining mutations necessary to distinguish coinfecting viral lineages; and the ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we have put together a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. It enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming their plausibility with the co-circulating lineages at the timeframe investigated. These coinfections represent around 0.61% of all samples investigated. Although our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, it is likely an underestimation and coinfection rates warrants further investigation. DATA SUMMARYThe raw fastq data of codetection cases are deposited on gisaid.org and correlated to gisaid codes: EPI_ISL_1068258, EPI_ISL_2491769, EPI_ISL_2491781, EPI_ISL_2645599, EPI_ISL_2661789, EPI_ISL_2661931, EPI_ISL_2677092, EPI_ISL_2777552, EPI_ISL_3869215. Supplementary data are available on https://doi.org/10.6084/m9.figshare.16570602.v1. The workflow code used in this study is publicly available on: https://github.com/dezordi/IAM_SARSCOV2.


Sujets)
Co-infection
9.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.12.21263453

Résumé

Summary The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated as Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ 144 or Δ 141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we found no overrepresentation of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sub-lineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting new variants with higher infectivity are expected to increase.


Sujets)
COVID-19
10.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-580195.v1

Résumé

One of the most remarkable features of the SARS-CoV-2 Variants of Concern (VOC) is the unusually large number of mutations they carry. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we described a new SARS-CoV-2 lineage provisionally designated as P.1-like-II that, as well as the previously described lineage P.1-like-I, shares several lineage-defining mutations with the VOC P.1 circulating in Brazil. Reconstructions of P.1 ancestor sequences demonstrate that the entire constellation of mutations that define the VOC P.1 did not accumulate within a single long-term infected individual, but was acquired by sequential addition during interhost transmissions. Our evolutionary analyses further estimate that P.1-ancestors strains carrying half of the P.1-lineage-defining mutations, including those at the receptor-binding domain of the Spike protein, circulated cryptically in the Amazonas state since August 2020. This evolutionary pattern is consistent with the hypothesis that partial human population immunity acquired from natural SARS-CoV-2 infections during the first half of 2020 might have been the major driving force behind natural selection that allowed VOCs' emergence and worldwide spread. These findings also support a long lag-time between the emergence of variants with key mutations of concern and expansion of the VOC P.1 in Brazil.


Sujets)
COVID-19
11.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.19.21253946

Résumé

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the SARS-CoV-2 Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil is generating new viral lineages that might be more resistant to neutralization than parental variants of concern.

12.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-318392.v1

Résumé

The SARS-CoV-2 lineage B.1.1.28 has been evolving in Brazil since February 2020 giving origin to multiple local clades including the new Variant of Concern (VOC) designated P.1 or 501Y.V3. The recent emergence of sub-lineages with convergent mutations in the spike (S) protein raises concern about the potential impact on viral infectivity and immune escape. We describe here the first three confirmed SARS-CoV-2 reinfections cases with the new VOC P.1 in residents of the Amazonas state, Brazil. Three female patients, 29, 40, and 50-year-old, were RT-PCR confirmed for SARS-CoV-2 on two occasions, with at least 92 days apart. Next-generation sequencing and phylogenetic analysis were conducted to precisely access the SARS-CoV-2 lineages of each infection event. SARS-CoV-2 genomic analysis confirmed three cases of reinfections caused by the VOC P.1 in patients that were primo-infected by distinct viral lineages 3–9 months earlier. Case 1 (29-year-old) was positive on March 24, 2020 (lineage B.1.195) and then on December 30, 2020 (lineage P.1); case 2 (50-year-old) was positive on October 19, 2020 (lineage B.1.1.33) and on January 19, 2021 (lineage P.1); case 3 (40-year-old) was positive on April 22, 2020 (lineage B.1.195) and on January 29, 2021 (lineage P.1). The three patients displayed low mean Ct values (< 22) at nasopharyngeal samples and reported less severe illness during reinfection. The present study provides the first evidence of the new VOC P.1 causing multiple reinfections during the second epidemic peak in the Amazonas state. Our findings suggest that reinfected individuals may have been infectious. Although immune responses induced by natural infections do not necessarily prevent subsequent infections by the VOC P.1, they may still protect from severe disease.

13.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.06.20249026

Résumé

Summary Background: Uruguay is one of the few countries in the Americas that successfully contained the COVID-19 epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of SARS-CoV-2 strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ~1,100 km uninterrupted dry frontier. Methods: Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Findings: Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan suburban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Interpretation: Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems are crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.


Sujets)
COVID-19
14.
researchsquare; 2020.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-40432.v1

Résumé

The coronaviruses (CoVs) called the attention of the world for causing outbreaks of severe acute respiratory syndrome (SARS-CoV), in Asia in 2002-03, and respiratory disease in the Middle East (MERS-CoV), in 2012. In December 2019, yet again a new coronavirus (SARS-CoV-2) first identified in Wuhan, China, was associated with a severe respiratory infection, known today as COVID-19. This new virus is highly transmissible, and quickly spread throughout China and 30 additional countries. As result, the World Health Organization (WHO) elevated the status of the COVID-19 outbreak from emergency of international concern to pandemic on March 11, 2020. The impact of COVID-19 on public health and economy fueled a worldwide race to approve therapeutic and prophylactic agents, but so far, there are no specific antiviral drugs or vaccines available. In current scenario, the development of in vitro systems for viral mass production and for testing antiviral and vaccine candidates proves to be an urgent matter. Research groups around the world are strongly focused on this, and the susceptibility of different cell lines to SARS-CoV-2 infection has already been demonstrated by molecular techniques. However, data on the biology of SARS-CoV-2 at the ultrastructural level in these in vitro models is still scarce. In this study, we documented, by transmission electron microscopy and real-time RT-PCR, the infection of Vero-E6 cells with SARS-CoV-2 samples isolated from Brazilian patients. The infected cells presented cytopathic effects and SARS-CoV-2 particles were observed attached to the cell surface and inside cytoplasmic vesicles. The entry of the virus into cells occurred through the endocytic pathway or by fusion of the viral envelope with the cell membrane. Assembled nucleocapsids were verified inside rough endoplasmic reticulum cisterns (RER). Viral maturation seemed to occur by budding of viral particles from the RER into smooth membrane vesicles. Therefore, the susceptibility of Vero-E6 cells to SARS-CoV-2 infection and the viral pathway inside the cells were demonstrated by ultrastructural analysis.


Sujets)
COVID-19 , Infections de l'appareil respiratoire , Maladies de l'appareil respiratoire , Syndrome respiratoire aigu sévère
SÉLECTION CITATIONS
Détails de la recherche